Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Aging (Albany NY) ; 13(23): 24943-24962, 2021 12 04.
Article in English | MEDLINE | ID: covidwho-1622953

ABSTRACT

Ongoing pandemic and potential resurgence of Coronavirus disease 2019 (COVID-19) has prompted urgent efforts to investigate the immunological memory of convalescent patients, especially in patients with active cancers. Here we performed single-cell RNA sequencing in peripheral blood samples of 3 healthy donors (HDs), 4 COVID-19 patients (Covs) and 4 COVID-19 patients with active gynecological tumor (TCs) pre- and post- anti-tumor treatment. All Covs patients had recovered from their acute infection. Interestingly, the molecular features of PBMCs in TCs are similar to that in Covs, suggesting that convalescent COVID-19 with gynecologic tumors do not have major immunological changes and may be protected against reinfection similar to COVID-19 patients without tumors. Moreover, the chemotherapy given to these patients mainly caused neutropenia, while having little effect on the proportion and functional phenotype of T and B cells, and T cell clonal expansion. Notably, anti-PD-L1 treatment massively increased cytotoxic scores of NK cells, and T cells, and facilitated clonal expansion of T cells in these patients. It is likely that T cells could protect patients from SARS-CoV-2 virus reinfection and anti-PD-L1 treatment can enhance the anti-viral activity of the T cells.


Subject(s)
COVID-19/complications , Genital Neoplasms, Female/complications , Genital Neoplasms, Female/therapy , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Genital Neoplasms, Female/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Cell Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
Nat Commun ; 12(1): 4543, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328844

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Critical Illness , Genomics/methods , Humans , Lipidomics/methods , Metabolomics/methods , Neutrophils/metabolism , Transcriptome/genetics
3.
Nat Commun ; 12(1): 3501, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1263489

ABSTRACT

The characteristics of COVID-19 patients with persistent SARS-CoV-2 infection are not yet well described. Here, we compare the clinical and molecular features of patients with long duration of viral shedding (LDs) with those from patients with short duration patients (SDs), and healthy donors (HDs). We find that several cytokines and chemokines, such as interleukin (IL)-2, tumor necrosis factor (TNF) and lymphotoxin α (LT-α) are present at lower levels in LDs than SDs. Single-cell RNA sequencing shows that natural killer (NK) cells and CD14+ monocytes are reduced, while regulatory T cells are increased in LDs; moreover, T and NK cells in LDs are less activated than in SDs. Importantly, most cells in LDs show reduced expression of ribosomal protein (RP) genes and related pathways, with this inversed correlation between RP levels and infection duration further validated in 103 independent patients. Our results thus indicate that immunosuppression and low RP expression may be related to the persistence of the viral infection in COVID-19 patients.


Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , COVID-19/virology , Cytokines/blood , Gene Expression Profiling , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Leukocytes, Mononuclear/pathology , Lymphocyte Activation/genetics , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/pathology , Ribosomal Proteins/genetics , SARS-CoV-2/isolation & purification , Signal Transduction/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL